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Abstract— The Hilbert transform relates the real and the
imaginary parts of the transfer function of a causal system. The
objective of this paper is to illustrate how the Hilbert transform
relationship can be utilized to interpolate/extrapolate measured
frequency domain responses of devices. Sample numerical exam-
ples are presented to illustrate the efficacy of this method.

I. INTRODUCTION

YSTEM measurements in the time domain are easier
Sto perform since the waveforms of interest are all real.
However, one disadvantage of performing measurements in
the time domain is limited dynamic range. Frequency domain
measurement equipment benefits from large dynamic range.
Furthermore, frequency domain measurements may be carried
out either over an entire range of frequencies or selectively
over a band of frequencies. Theoretically, it is possible to
extract a time domain response from these measurements by an
inverse Fourier transform. But, if the measurements are made
in a noisy environment, or over a selected band of frequencies,
it is difficult to recover the entire time domain response.

The time domain response of a physical system is always
causal, since the signal is nonzero only after a certain interval
of time. However, since band-limited complex frequency
domain data does not guarantee causality in the time domain,
nor a real time domain response, measurements carried out
in the frequency domain do not truly represent the transient
response of the system. Even so, we establish that it is
possible to extract a causal response by interpolating the
complex frequency domain data under the premise that the
time domain signal must be causal. We use the principle of
causality to extrapolate/interpolate frequency domain response
[1].

In general, the real and the imaginary parts of the com-
plex frequency domain data are independent of each other.
However, the causality of the time domain signal, denoted as
h(t), assures us that the real and imaginary components of the
frequency domain are related through the Hilbert transform.
If we denote Hgp(jw) as the real part and Hg(jw) as the
imaginary part of the transfer function, H(jw), obtained from
the Fourier transform of h(t), then, from causality, they
have to be related by the Hilbert transform [1]-[9]. The
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physical principal of causality imposed some constraints on
the real and the imaginary parts of the transfer functions. The
relationship was originally developed by Kramers and Kronig
[2]-[4]. James and Andrasic [5] have used this approach to
minimize the effects of noise on experimental data. Arabi et
al. [6] has used the Hilbert transform technique to generate
causal time domain responses of multiconductor transmission
lines by enforcing the Kramers—Kronig relationship between
the dielectric constant and the loss tangent of any dielectric
material. Tesche has used this technique [7] and [8] to generate
a causal time domain response from bandlimited frequency
domain data. The property that the real and the imaginary parts
of the frequency domain data correspond to the even and odd
parts of h(t) is exploited in extracting a causal response from
complex band-limited frequency domain data.

Since we process discrete frequency domain data, we handle
frequency and time domain signals in the form of sequences.
Numerical results are presented to demonstrate the utility of
this technique.

II. INTERPOLATION/EXTRAPOLATION
OF FREQUENCY DOMAIN DATA

A technique to extrapolate/interpolate data in the frequency
domain utilizing the Fourier Transform to implement the
Hilbert transform is described. Before the algorithm is de-
scribed, it is useful to know something about the available
frequency domain data. Assume that we have a complex fre-
quency domain data between frequencies f; and f;. Consider
a missing band between f5 and f3. The frequency domain data
is sampled at (no-n1) frequency points between f> and f1, and
at (nq4-ng) points between f4 and f3. This is expressed as a
vector

H[nl:n4]:[Hnl"'HnZa0"'07Hn3"'Hn4] (1)

It is now our objective to interpolate this missing data between
ng and nz. As a first step: -

1) The available bandlimited frequency domain data
is padded with zeros to ensure a length of =
points where 7 is given by N/2 + 1, and N is
[2, 4,8, ...,1024, 2048, - ..], providing a sequence of
even length. The complex data is now given by

H[l:n)=H[1:N/2+ 1]
:[an,"'anl,"'7Hn2,0w07"'70a
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Fig. 1. These are plots of the frequency domain data of a microstrip band-pass filter [Interpolation results]. (a) Plot of the real and imaginary parts of the
original data. (b) Plot of the real and imaginary parts of the original data showing the missing band. (c) Plot of reconstructed real part of the original real part.
(d) Plot of reconstructed imaginary part of the original imaginary part. (e) Plot of log-magnitude of both the original and the reconstructed data.

Hpg, -+, Hpy, 0,0, -+, 0]. ) 4) An inverse discrete Fourier transform of Hpg results in
an even sequence h.[n] ' ‘
2) This complex sequence is altered to obtain a complex

consequence of length N. This is done by appending the he(1: N) =Real [IFFT(HR)] ©)

complex conjugate of the sequence to the original data and

heln] = he[—n]. @)
H[l:N]=[H[1:N/2+1],H[N/2:2]. 3)

This is in fact the even part of the time domain
sequence. The numerical implementation and the prop-
erties of the Hilbert transform may be found elsewhere
[11].

5) Before proceeding further, it is important to know that
Hp =Real [H] @ there are sharp discontinuities in the frequency domain
H; =Imag[H]. ()] signal. In order to deal with this situation, we will

3) The complex sequence is now split into its real and
imaginary parts
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Fig. 2. These are plots of the frequency domain data of a microstrip band-pass filter. [Extrapolation results]. (a) Plot of the real and imaginary parts
of the original data showing the missing band. (b) Plot of real and imaginary parts of the reconstructed data. (c) Plot of log-magnitude of both the
original and the reconstructed data.
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Fig. 3. These are plots of the frequency domain data of another microstrip filter [Interpolation of a considerably large number of missing points]. (a) Plot
of the real and imaginary parts of the original data. (b) Plot of reconstructed real part and the original real part showing the missing points. (c) Plot of
reconstructed imaginary part of the original imaginary part showing the missing points.
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Fig. 4. These are plots of the frequency domain data for the input impedance of a dipole antenna. (a) Plot of the real and imaginary parts of the
original data. (b) Plot of reconstructed real part and the original real part showing the missing points. (¢) Plot of reconstructed imaginary part and the
original imaginary part showing the missing points.
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Fig. 5. These are plots of the frequéncy domain data for a microstrip notch filter. (a) Plot of the real and imaginary parts of the original data. (b) Plot
of reconstructed real part and the original real part showing the missing points. (¢) Plot of reconstructed imaginary part and the original imaginary part
showing the missing points. (d) Plot of log-magnitude of both the original and the reconstructed data.
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have to multiply the time domain sequence with a
window.

A Hanning window of length N is multiplied with the
time domain sequence. The resulting frequency domain
sequence will now be filtered or “smoothed” [10].

The Hanning window is given by

0.5 cos (27n)

0 otherwise

Hence

he(1:N) =he(1: N)«W(1:N) ©)

where the * denotes the convolution.
6) The odd sequence is obtained from the even sequence
by making use of the relationships available in [11].

We have
ho(L: N)=[0 he(2: N/2) 0 —ho(N/2+2: N)]
10
and
ho[n] = —ho[—n]. (11)

7) The discrete Fourier transform of this odd sequence
will give the imaginary part of the spectrum as stated
earlier

H?P** = Imag [FFT(h,)]. (12)

8) A substitution for the missing points is made in the imag-
inary part of the original sequence using the sequence
obtained in Step 7)

HZY =[HP*(1:ny — 1),
Hi(ny : ng),
Hp*"(ng +1:n3—1),
Hi(ns : ng),

HP*“(ny+1: N/2+1))]. (13)

9) This sequence is copied to obtain a sequence of length N
which is an improved version of the original sequence
H;

HP™ = [HZU[1: N/2 + 1], —HFY*[N/2:2]. (1)

10) The inverse discrete Fourier transform of this sequence
will give us the odd sequence again

hPeY = IFFT[j HF"?) (15)
since
hln] = he[n] + ho[n]. (16)
11) We get the modified version of %, from
he® =[he(1), h5*(2: n/2), he(N/2 + 1),
—h*¥(N/24+2: N)]. (17)

12) The discrete Fourier transform of this sequence ob-
tained in the previous step will give us the real part of
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the spectrum as stated earlier

HR** = Real [FFT(A2)). (18)

13) A substitution for the missing points is made in the
Real part of the original sequence using the sequence
obtained in Step 12), as

HEW[HE(1:ny — 1),
Hg(ni : na),
ngw(’ng +1:ng3—1),
Hp(ns : ng),
Hy(ng+1: N/2+1)]. (19)

14) This sequence is copied to obtain a sequence of length

N
HE = [HE[1: N/2+1),

HEY[N/2 : 2]] (20)

which is an improved version of the original sequence
Hpg.

The resulting sequence is subject to an inverse discrete
Fourier transform to obtain the even sequence

he(1 : N) = Real [IFFT (Hgu*)].

15)

21

16) As in Step 5), this time domain sequence is multiplied
with the Hanning window.
Subsequent signal processing are iterations of Steps
6)-16).

The above procedure will interpolate the missing band
of frequencies. The reconstructed sequence will now be the

complex sequence given by

17)

HR[L:ng) = HR***[1:ny] + jH7[L:ng] (22
and by comparing with (1) we have
HEe[1:ny) =
[Hpi, -y Hpgy - -, Hf;ih e Hf;fl, Hps, -, Hpdl.
23)

It is worthwhile to note that by making use of the Hanning
window, although we have overcome the difficulties due to
discontinuities at the ends of the missing band, we might suffer
a loss of resolution. This is not a serious problem and its effects
can be minimized as shown in the numerical examples.

III. NUMERICAL RESULTS

As a first example consider the frequency domain data of
a microstrip filter measured using the HP 8510B Network
Analyzer. The device is a band-pass filter and its characteristics
are measured at 415 points from 4.2069-8.5 GHz as shown in
Fig. 1(a). Since in this example, the final result of interest is
extrapolation/interpolation of the data in the frequency domain,
translating the frequency axis by equating 4.2069 to 0 GHz
does not really affect the results. In this example, we throw
away the data points from 161-219 which corresponds to
the frequency points of 5.4875-6.2375 GHz, as shown in
Fig. 1(b). The missing data points are replaced by zeros, and
the data is padded by zeros from 416-1025 sample points. The
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objective is to interpolate the missing data values by utilizing
the principles of Section II. ,

Fig. 1(c) describes the interpolated data points utilizing
the iterative principles described in Section IV to interpolate
samples 161-219. In Fig. 1(c) and (d), the reconstructed data
is compared to that of the original data, bogh in the real and
in the imaginary parts, respectively. Fig. 1(e) plots the log-
magnitude plot of the bandpass filter with both the real data
and the reconstructed data superimposed. So for this example,
the objective has been to interpolate part of the pass band
response from stop band data.

For the second example, we try to extrapolate the stop band
data from the pass band response. Again Fig. 1(a) displays
the 415 point band-pass filter data. Out of the 415 points, data
from 1-80 and 310415 points are discarded. These are the 3
dB points of the filter. This is equivalent to discarding the data
from 3.5-4.9875 GHz and 6.5875-8.5 GHz. This is shown in
Fig. 2(a). The extrapolated data is generated by utilizing the
Hilbert transform iteration, described in the previous section.
The extrapolated data matched well with the original data as
illustrated by Fig. 2(b) and (c). It was difficult to match the
out of band response below 30 dB, because the 50 2 matched
loads used in our experiments had a S1; value, which did not
go below 30 dB.

For the third example consider the measured data of a
microstrip filter measured between 4.2069-8.0013 GHz using
468 points. The data is shown in Fig. 3(a). We now remove a
large number of data points in the pass band from 201-270.
The Hilbert transform technique was used to fill in the missing
data points. producing interpolated responses for the real and
imaginary parts of the data as shown in Fig. 3(b) and (c). The
interpolated data agrees well with the original data shown in
Fig. 3(a).

For the fourth example consider the interpolation of input
impedance of a dipole antenna. The antenna is considered to
be 2 m (= L) long and of radius 0.1 mm (—R). The input
impedance of the center fed dipole was computed at every
1 MHz interval up to 800 MHz and 801 data samples are
considered. The data measured was generated utilizing the
commercially available code AWAS [12]. The original data is
shown in Fig. 4(a). Next we excise data from 401-470 MHz
which is equivalent to removing a peak in the real part and a
fraction of the peak in the input reactance of the imaginary
part. Next the Hilbert transform relationship is utilized to
interpolate the input impedance of the dipole antenna in the
missing band. The interpolated data are shown in Fig. 4(b)
and (c). Even though the peak is positioned correctly, the
amplitudes are underestimated. It has been observed that for
thick dipole antennas (where the L/R ratio is small) the
peak is reproduced more accurately than for the thin dipole
antennas. The interpolated results more accurately match the
actual data, since for an antenna with small L/R, the peaks in
the impedances are wider and the FFT becomes much more
well behaved.

As the final example, let us consider the measured data of a
microstrip notch filter between the frequencies 2.0-6.0 GHz.
Fig. 5(a) shows the original data with real and imaginary parts.
In this case, most of the first peak is removed, i.e., data points
from 35-41. Fig. 5(b) and (c) shows the reconstructed real and
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imaginary parts respectively, while Fig. 5(d) shows the plot of
the log-magnitude. The reconstructed data generated from the
methodology described in Section II closely matches with the
original data. '

IV. CoNcLusION

Currently work is underway to find out the regions of va-
lidity of this approach and when it breaks down. Finally, what
is the minimum number of effective bits required in the data
to successfully perform such data interpolation/extrapolation.
Solution of these important problems will further enhance the
potential of this method.
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