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Abstract— The Hilbert transform relates the real and the

imaginary parts of the transfer function of a causal system. The

objective of this paper is to illustrate how the Hilbert transform
relationship can be utilized to interpolate/extrapolate measured

frequency domain responses of devices. Sample numerical exam-
ples are presented to illustrate the efficacy of this method.

I. INTRODUCTION

sYSTEM measurements in the time domain are easier

to perform since the waveforms of interest are all real,

However, one disadvantage of performing measurements in

the time domain is limited dynamic range. Frequency domain

measurement equipment benefits from large dynamic range.

Furthermore, frequency domain measurements may be carried

out either over an entire range of frequencies or selectively

over a band of frequencies. Theoretically, it is possible to

extract a time domain response from these measurements by an

inverse Fourier transform. But, if the measurements are made

in a noisy environment, or over a selected band of frequencies,

it is difficult to recover the entire time domain response.

The time domain response of a physical system is always

causal, since the signal is nonzero only after a certain interval

of time. However, since band-limited complex frequency

domain data does not guarantee causality in the time domain,

nor a real time domain response, measurements carried out

in the frequency domain do not truly represent the transient

response of the system. Even so, we establish that it is

possible to extract a causal response by interpolating the

complex frequency domain data under the premise that the

time domain signal must be causal. We use the principle of

causality to extrapolate/interpolate frequency domain response

[1].

In general, the real and the imaginary parts of the com-

plex frequency domain data are independent of each other.

However, the causality of the time domain signal, denoted as

h(t), assures us that the real and imaginary components of the

frequency domain are related through the Hilbert transform.

If we denote lln(jw) as the real part and HG (jw) as the

imaginary part of the transfer function, H(jw), obtained from

the Fourier transfomn of h(t), then, from causality, they

have to be related by the Hilbert transform [1]-[9]. The
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physical principal of causality imposed some constraints on

the real and the imaginary parts of the transfer functions. The

relationship was originally developed by Kramers and Kronig

[2]–[4]. James and Andrasic [5] have used this approach to

minimize the effects of noise on experimental data. Arabi et
al. [6] has used the Hilbert transform technique to generate

causal time domain responses of multiconductor transmission

lines by enforcing the Kramers-Kronig relationship between

the dielectric constant and the loss tangent of any dielectric

material. Tesche has used this technique [7] and [8] to generate

a causal time domain response from bandlimited frequency

domain data. The property that the real and the imaginary parts

of the frequency domain data correspond to the even and odd

parts of h(t) is exploited in extracting a causal response from

complex band-limited frequency domain data.

Since we process discrete frequency domain data, we handle

frequency and time domain signals in the form of sequences.

Numerical results are presented to demonstrate the utility of

this technique.

II. INTERPOLATION/EXTRAPOLATION

OF FREQUENCY DOMAIN DATA

A technique to extrapolate/interpolate data in the frequency

domain utilizing the Fourier Transform to implement the

Hilbert transform is described, Before the algorithm is de-

scribed, it is useful to know something about the available

frequency domain data. Assume that we have a complex fre-

quency domain data between frequencies jI and f4. Consider

a missing band between fz and f3,The frequency domain data

is sampled at (n2-nl ) frequency points between f2 and f 1,and

at (n4-rz3 ) points between f4 and f3. This is expressed as a

vector

H[nl :n4] = [Hnl... ffnz, 0...0, Hn3... Hn4] (1)

It is now our objective to interpolate this missing data between

722 and 723. As a first step:

1) The available bandlimited frequency domain data

is padded with zeros to ensure a length of n

points where n is given by N/2 + 1, and N is
[2, 4,8, . . . . 1024,2048, . . .], providing a sequence of

even length. The complex data is now given by

11[1 : n] =H[l : N/2+1]

=[o, o,..., Hn,, Hn2,0,0,0,0, . . ..o.

001 8–9480/96$05.00 0 1996 IEEE
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Fig. 1. These are plots of the frequency domain data of a microstrip band-pass filter [Interpolation results]. (a) Plot of the real and imaginary parts of the

original data. (b) Plot of the real and imaginary parts of the original data showing the missing band. (c) Plot of reconstructed real part of the original rest part.
(d) Plot of reconstructed imaginary part of the original imaginary part. (e) Plot of log-magnitude of both the original and the reconstructed data.

Hn3, ..., Hn4, o, 0, . . . . 0]! (2) 4)

2) This complex sequence is altered to obtain a complex

consequence of length N. This is done by appending the

complex conjugate of the sequence to the original data

11[1 : N] = [H[l : N/2+ l],27[N/2 : 2]]. (3)

3) The complex sequence is now split into its real and

imaginary parts

H~ = Real [H] (4) 5)

HI = Imag [H]. (5)

An inverse discrete Fourier transform of HR results in

an even sequence he[n]

he(l : N) = Real [IFIFT(IZR)] (6)

and

he[n] = he[–n]. (7)

This is in fact the even part of the time domain
sequence. The numerical implementation and the prop-

erties of the Hilbert transform IUay be found elsewhere

[11].

Before proceeding further, it is important to know that

there are sharp discontinuities inl the frequency domain

signal. In order to deal with this situation, we will
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Fig. 2. These are plots of the frequency domain data of a microstrip band-pass filter. [Extrapolation results]. (a) Plot of the resd and imaginary parts
of the original data showing the missing band. (b) Plot of real and imaginary parts of the reconstructed data. (c) Plot of log-magnitude of both the

original and the reconstnrcted data.
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Fig. 3. These are plots of the frequency domain data of another microstrip filter [Interpolation of a considerably large number of missing points]. (a) Plot
of the real and imaginary parts of the original data. (b) Plot of reconstructed real part and the original real part showing the missing points. (c) Plot of
reconstructed imaginmy part of the original imaginary part showing the missing points.
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Fig.4. These are plots of the frequency domain data for the input impedance of a dipole antenna. (a) Plot of the real and imaginary parts of
original data. (b) Plot of reconstructed real part and the original real part showing the missing points. (c) Plot of reconstructed imaginary part and
original imaginary part showing the missing points.
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Fig. 5. These are plots of the frequency domain data for a microstrip notch filter. (a) Plot of the rent and imaginary parts of the original data. (b) Plot
of reconstructed real part and the original real part showing the missing points. (c) Plot of reconstructed imaginary part and the original imaginary part
showing the missing points. (d) Plot of log-magnitude of both the original and the reconstructed data.
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6)

7)

8J

9)

have to multiply the time domain sequence with a

window.

A Harming window of length N is multiplied with the

time domain sequence. The resulting frequency domain

sequence will now be filtered or “smoothed” [10].

The Harming window is given by

{

05_0.5cos(2nn) o<n<N
w(n) = ‘ N

—

}

. (8)
o otherwise

Hence

Ite(l : N) = h,(l : N) *W(l : N) (9)

where the * denotes the convolution.

The odd sequence is obtained from the even sequence

by making use of the relationships available in [11],

We have

ho(l : N) = [0 he(2 : N/2) O –he(N/2 + 2: N)]

(lo)

and

ho[n] = –ho[–?z]. (11)

The discrete Fourier transform of this odd sequence

will give the imaginary part of the spectrum as stated

earlier

I&’w = Imag [FFT(ho)]. (12)

A substitution for the missing points is made in the imag-

inary part of the original sequence using the sequence

obtained in Step 7)

I@” = [H;’~(1 : n, - 1),

HI(7L1 : nz),

ll;’~(n, + 1: ‘n, - 1),

HI(n3 : n4),

ll~ew(w + 1: N/2 + l)]. (13)

This sequence is copied to obtain a sequence of length N

which is an improved version of the original sequence

HI

I@ub = [H;U6[1 : N/2+ 1], –@’~[N/2 : 2]]. (14)

10) The inverse discrete Fourier transform of this sequence

will give us the odd sequence again

h~eW = IFFT[j@U~S] (15)

since

I@] = he[n] + ho[n] . (16)

11) We get the modified version of h,, from

h~eW = [h.(l), h~ew(2 : n/2), he(N/2 + 1),

-&ew(N/2 + 2 ‘ w]. (17)

12) The discrete Fourier transform of this sequence ob-

tained in the previous step will give us the real part of

13)

14)

15)

16)

17)

The

the spectrum as stated earlier

H&W = Real [FFT(h~’w)]. (18)

A substitution for the missing points is made ir~ the

Real part of the original sequence using the sequence

obtained in Step 12), as

H;”~[H&w(l : nl – 1),

HR(nl : nz),

WW(7J2 + 1 : 7J3 – 1)>

Hj3(n3 : n4),

~&w(~4 + 1: N/2 + 1)1. (19)

This sequence is copied to obtain a sequence of length

N

I@’ = [I&[l : N/2+ I],

Hy~[N/2 : 2]] (20)

which is an improved version of the original sequence

HR.
The resulting sequence is subject to an inverse discrete

Fourier transform to obtain the even sequence

h.(1 : N) = Real [IFFT (H&bs)]. (21)

As in Step 5), this time domain sequence is multiplied

with the Harming window.

Subsequent signal processing are iterations of Steps

6)-16).

above procedure will interpolate the missing band

of frequencies .- The reconstructed sequence will now-be the

complex sequence given by

s~”[l : n~] (22)HR’C[l : n4] = H~~s[l : Tt4] + jHI

and by comparing with (1) we have

HRec[l : n4] =

[Hnl, . . . . Hn2, . . . Hf’;$l, ., H~;S1, HM, ., l~n4].

(23)

It is worthwhile to note that by making use of the Harming

window, although we have overcome the difficulties due to

discontinuities at the ends of the missing band, we might suffer

a loss of resolution. This is not a serious problem and its effects

can be minimized as shown in the numerical examples.

III. NUMERICAL RESULTS

As a first example consider the frequency domain data of

a microstrip filter measured using the HP 8510B Network
Analyzer. The device is a band-pass filter and its characteristics

are measured at 415 points from 4.2069–8.5 GHz as shown in

Fig. 1(a). Since in this example, the final result of interest is

extrapolation/interpolation of the data in the frequency domain,
translating the frequency axis by equating 4.2069 to O GHz

does not really affect the results. In this example, we throw

away the data points from 16 1–219 which corresponds to

the frequency points of 5.4875–6.2375 GHz, as shown in

Fig. l(b). The missing data points are replaced by zeros, and

the data is padded by zeros from 4 16–1025 sample points. The
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objective is to interpolate the missing data values by utilizing

the principles of Section II.
Fig. l(c) describes the interpolated data points utilizing

the iterative principles described in Section IV to interpolate

samples 161–219. In Fig. l(c) and (d), the reconstructed data

is compared to that of the original data, both in the real and

in the imaginary parts, respectively. Fig. l(e) plots the log-

magnitude plot of the bandpass filter with both the real data

and the reconstructed data superimposed. So for this example,

the objective has been to interpolate part of the pass band

response from stop band data.

For the second example, we try to extrapolate the stop band

data from the pass band response. Again Fig. 1(a) displays

the 415 point band-pass filter data. Out of the 415 points, data

from 1–80 and 310415 points are discarded. These are the 3

dB points of the filter. This is equivalent to discarding the data

from 3.5-4.9875 GHz and 6.5875–8.5 GHz. This is shown in

Fig. 2(a). The extrapolated data is generated by utilizing the

Hilbert transform iteration, described in the previous section.

The extrapolated data matched well with the original data as

illustrated by Fig. 2(b) and (c). It was difficult to match the

out of band response below 30 dB, because the 50 Q matched

loads used in our experiments had a S1l value, which did not

go below 30 dB.
For the third example consider the measured data of a

microstrip filter measured between 4.2069–8.0013 GHz using

468 points. The data is shown in Fig. 3(a). We now remove a

large number of data points in the pass band from 201-270.

The Hilbert transform technique was used to fill in the missing

data points producing interpolated responses for the real and

imaginary parts of the data as shown in Fig. 3(b) and (c). The

interpolated data agrees well with the original data shown in

Fig. 3(a).

For the fourth example consider the interpolation of input

impedance of a dipole antenna. The antenna is considered to

be 2 m (= ~) long and of radius 0.1 mm (–l?,). The input

impedance of the center fed dipole was computed at every

1 MHz interval up to 800 MHz and 801 data samples are

considered. The data measured was generated utilizing the

commercially available code AWAS [12]. The original data is

shown in Fig. 4(a). Next we excise data from 401~70 MHz

which is equivalent to removing a peak in the real part and a

fraction of the peak in the input reactance of the imaginary

part. Next the Hilbert transform relationship is utilized to

interpolate the input impedance of the dipole antenna in the

missing band. The interpolated data are shown in Fig. 4(b)
and (c). Even though the peak is positioned correctly, the

amplitudes are underestimated. It has been observed that for

thick dipole antennas (where the L/R ratio is small) the

peak is reprcrduced more accurately than for the thin dipole

antennas. The interpolated results more accurately match the

actual data, since for an antenna with small L/R, the peaks in

the impedances are wider and the FFT becomes much more

well behaved.
As the final example, let us consider the measured data of a

microstrip notch filter between the frequencies 2.0–6.0 GHz.
Fig. 5(a) shows the original data with real and imaginary parts.

In this case, most of the first peak is removed, i.e., data points

from 3541. Fig. 5(b) and (c) shows the reconstructed real and

imaginary parts respectively, while Fig. 5(d) shows the plot of

the log-magnitude. The reconstructed data generated from the

methodology described in Section II closely matches with the

original data.

IV. CONCLUSION

Currently work is underway to find out the regions of va-

lidity of this approach and when it breaks down. Finally, what

is the minimum number of effective bits required in the data

to successfully perform such data interpolation/extrapolation.

Solution of these important problems will further enhance the

potential of this method.
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